

length of waveguide L , over a bandwidth $\Delta\omega$ is approximately

$$\Delta t = -\frac{\omega_c^2}{c^2\bar{\omega}_0^2\beta_0} \Delta\omega L$$

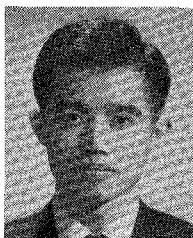
where

ω_0 waveguide angular cutoff frequency
 c speed of light in free space
 $\bar{\omega}_0$ band-center angular frequency

$$\beta_0 = \frac{\bar{\omega}_0}{c} \sqrt{1 - \left(\frac{\omega_c}{\bar{\omega}_0}\right)^2}.$$

For a 2-in-diameter waveguide operating in the circular-electric mode (TE₀₁) and a center frequency of 50 GHz, and a 300-MHz bandwidth, $\Delta t = 3.82 \times 10^{-10}$ s/mi.

Thus the circuit described would equalize 25.8 mi of waveguide. A worst case analysis of the effects of the echo produced by the delay ripples indicates that this equalizer would produce 1 dB of degradation in signal-to-noise ratio performance for an amplitude-modulated PCM system [8]. The network may also be useful in pulse expansion


or compression applications. Note that for a "chirping" application, the input and output are taken at the N th filter with ports 1 and 2 of the zeroth filter terminated.

R. D. STANLEY
 Bell Telephone Labs., Inc.
 Holmdel, N. J. 07733

REFERENCES

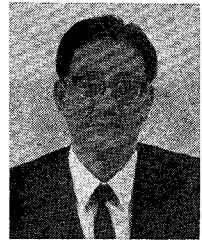
- [1] S. E. Miller, "Waveguide as a communication medium," *Bell Syst. Tech. J.*, vol. 33, Nov. 1954, pp. 1209-1265.
- [2] W. M. Hubbard, J. E. Goell, W. D. Warters, R. D. Standley, G. D. Mandeville, T. P. Lee, R. C. Shaw, and P. L. Clouser, "A solid-state repeater for guided millimeter-wave communication system," *Bell Syst. Tech. J.*, vol. 36, Nov. 1967, pp. 1977-2018.
- [3] E. N. Torgow, "Equalization of waveguide delay distortion," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-13, Nov. 1965, pp. 756-762.
- [4] P. J. Tu, "A computer-aided design of a microwave delay equalizer," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-17, Aug. 1969, pp. 626-634.
- [5] S. S. Scanlan and J. P. Rhodes, "Microwave allpass networks—parts I and II," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-16, Feb. 1968, pp. 62-80.
- [6] F. S. Coale, "A traveling-wave directional filter," *IRE Trans. Microwave Theory Tech.*, vol. MTT-4, Oct. 1956, pp. 256-260.
- [7] R. D. Standley, "Frequency response of strip-line traveling-wave directional filters," *IEEE Trans. Microwave Theory Tech. (Corres.)*, vol. MTT-11, July 1963, pp. 264-265.
- [8] W. M. Hubbard, "The effect of intersymbol interference on error rate in binary differentially-coherent phase-shift-keyed systems," *Bell Syst. Tech. J.*, vol. 46, July-Aug. 1967, pp. 1149-1172.

Contributors

Chao-Chun Chen (M'70) was born in Taiwan, China, on January 10, 1935. He received the B.S. degree from National Taiwan University, Taipei, Taiwan, in 1958, and the M.S. and Ph.D. degrees from the University of Michigan, Ann Arbor, in 1964 and 1968, respectively, all in electrical engineering.

From 1959 to 1960 he served as an Electronic Officer in the Chinese Air Force. From 1960 to 1963 he was a Plant Engineer at Taiwan Cement Corporation. From 1965 to 1968 he was a Research Assistant at the Radiation Laboratory of the University of Michigan, where he worked on antenna research. In 1969 he joined Hughes Aircraft Company, Culver City, Calif. His main areas of interest are antennas, scattering problems, millimeter wave filters, and artificial dielectrics.

Dr. Chen is a member of Sigma Xi.

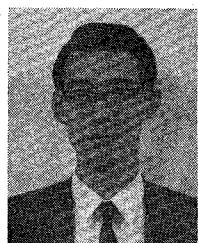


Edward C. DuFort (M'59) was born in London, Ont., Canada, on June 9, 1927. He received the B.S. and M.S. degrees in physics from the California Institute of Technology, Pasadena, in 1949 and 1952, respectively, and the Ph.D. degree in electrical engineering from the University of Southern California, Los Angeles, in 1964.

From 1949 to 1956 he was engaged primarily in digital computer studies of fluid flow through porous media for the Continental Oil Company, Houston, Tex. In 1956 he joined Hughes Aircraft Company, Fullerton, Calif., and conducted theoretical, experimental, and developmental studies of microwave components. He led the development of one of the first large operational electronically scanned pencil-beam phased arrays, the AN/SPS-33 antenna. He became head of the Antenna Section at Hughes Ground Systems in

1960 and contributed to the initial design of the ADAR multiple-beam time delay antenna system. He returned to full-time academic study and research in plasmas at the University of Southern California from 1961 to 1963 with the aid of a Hughes Fellowship. Subsequently, he investigated low-noise dish feeds, nuclear effects on ballistic missile defense radars, and phased array impedance matching. Currently he is Assistant Manager of the Electromagnetics Laboratory in the Communications and Radar Division.

Dr. DuFort is a member of Sigma Xi and Eta Kappa Nu.

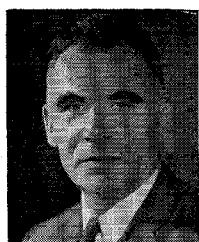

Kazuo Fujisawa (SM'59) was born in Tokyo, Japan, on August 24, 1921. He received the B.S. and Ph.D. degrees in electrical engineering from Osaka University, Osaka, Japan, in 1943 and 1955, respectively.

From 1948 to 1954 he was an Associate Professor on the Faculty of Engineering, Osaka University. From 1955 to 1962 he was a Professor at Kobe University. Since 1962 he has been a Professor at the Faculty of Engineering Science, Osaka University. He has

done research on reentrant cavities and on a new millimeter-wave tube called "Laddertron". He is now working on electromagnetic field problems and on the waves in semiconductor plasma.

Dr. Fujisawa is a member of the Institute of Electronics and Communication Engineers of Japan, the Physical Society of Japan, and the Japan Society of Applied Physics.

❖



Masahiro Hashimoto (S'70) was born in Osaka, Japan, on February 26, 1943. He received the B.S. and M.S. degrees from Osaka University, Osaka, Japan, in 1966 and 1968, respectively. He is presently studying analytical and numerical techniques for field problems at Osaka University.

Mr. Hashimoto is a member of the Institute of Electronics and Communication Engineers of Japan.

❖

❖

Marion E. Hines (S'46-A'47-M'50-SM'60-F'68) was born in Bellingham, Wash., on November 30, 1918. He received the B.S. degree in applied physics and the M.S. degree in electrical engineering from the California Institute of Technology, Pasadena, in 1940 and 1946, respectively.

He served as a Weather Officer with the Air Force from 1940 to 1945. He was with Bell Telephone Laboratories from 1946 to 1960, where he worked in research and development of microwave and storage tubes, parametric amplifiers, pulse transmission systems, and tunnel diode amplifiers and oscillators. Currently he is a Vice President, Research, at Microwave Associates, Inc., Burlington, Mass., where he has been most active in the development of harmonic-generator-type microwave sources, higher power microwave signal-control devices using diode switch elements, and solid-state microwave oscillators and amplifiers.

William R. Jones (SM'69) was born in Globe, Ariz., on November 9, 1932. He received the B.A. degree in mathematics from the University of California, Riverside, in 1957, and the M.S. and Ph.D. degrees in mathematics from Stanford University, Stanford, Calif., in 1958 and 1967, respectively.

From 1952 to 1954 he served in the U. S. Navy as a Training Devices Technician. From 1954 to 1957, while at the University of California, he was employed at the U. S. Naval Ordnance Laboratory, Corona, Calif., as a Microwave Technician. From 1958 to 1960 he was employed at the IBM Watson Research Laboratory, Yorktown Heights, N.Y., as a member of a microwave computer group investigating the application of microwave techniques to the development of high-speed logical circuits. In 1960 he joined Hughes Aircraft Company, Fullerton, Calif., where he concentrated primarily on the study of electromagnetic surface-wave excitation and diffraction problems. From 1962 to 1966 he returned to full-time academic study at Stanford University with the aid of a Hughes Fellowship. At present he is a Senior Scientist at Hughes Ground Systems Group, where he is involved primarily with research in the areas of electromagnetic and acoustic wave propagation and diffraction problems.

Dr. Jones is a member of Sigma Xi.

❖

Risaburo Sato (SM'62) was born in Furukawa City, Miyagiken, Japan, on September 23, 1921. He received the B.E. and Ph.D. degrees from Tohoku University, Japan, in 1944 and 1952, respectively.

From 1949 to 1961 he was an Assistant Professor at Tohoku University. Since 1961 he has been a Professor there. His research interests are in the areas of network theory, communication systems, active transmission-line theory, and antenna theory. He is author of the books, *Transmission Circuit, An Introduction to the Design of Passive Network*, and *Electrical Communication Engineering* (all in Japanese).

Dr. Sato is a member of the Institute of Electrical Communication Engineers of Japan.

❖

John L. Smith (M'64) was born in Stephenville, Tex., on October 10, 1928. He obtained the B.S.E.E. degree from the University of Michigan, Ann Arbor, in 1949, the S.M. degree in electrical engineering from the Massachusetts Institute of Technology, Cambridge, in 1954, and the Ph.D. degree from Purdue University, Lafayette, Ind., in 1963.

From 1949 to 1952 he was employed by Raytheon's Magnetron Development Laboratories. From 1955 to 1956 he was with the Research Division of the Marconi Company, Gt. Baddow, England, where he worked on a microwave relay system. An Instructor at Purdue, he was appointed an Assistant Professor of Electrical Engineering there in 1964. In 1966 he joined the Bell Telephone Laboratories Inc., Whippany, N.J., where he is involved in research and development on thin-film active and passive circuits.

Dr. Smith is a member of Sigma Xi, Tau Beta Pi, and Eta Kappa Nu.